If it's not what You are looking for type in the equation solver your own equation and let us solve it.
25x^2-40x+15=11
We move all terms to the left:
25x^2-40x+15-(11)=0
We add all the numbers together, and all the variables
25x^2-40x+4=0
a = 25; b = -40; c = +4;
Δ = b2-4ac
Δ = -402-4·25·4
Δ = 1200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1200}=\sqrt{400*3}=\sqrt{400}*\sqrt{3}=20\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-40)-20\sqrt{3}}{2*25}=\frac{40-20\sqrt{3}}{50} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-40)+20\sqrt{3}}{2*25}=\frac{40+20\sqrt{3}}{50} $
| 6x-9=3x-69 | | 3x+9x-5=3(4x+3) | | x/6=3||x6 | | -3/14j=9/7 | | r+(-19)=-129 | | 108n=49 | | -1-4c=-5c-10 | | 4x-2+2x+20=90 | | 7+5(x−3)=227 | | 4x+50=10 | | 6(3x−5)=13x | | -3/14j=-12/7 | | x*x=-6 | | 11+g÷4-3=12 | | 6^2=9x^2+36 | | 10x-3x+3=7x5+8 | | 7x+19=2x-1=90 | | 28=b×4 | | 2x+160850-160850=312750-160850 | | 6z-3=27 | | -7y=-2-17 | | 3y-9=4y-4 | | 11(9-2x)=12x=11) | | -30=6f | | 8x−1=2x+29 | | -7x-65=-4x+25 | | 4/5x-7=1/10x | | .1+8n=13 | | 15u-29=15u+-15 | | 3x+8+4x+11=180 | | u^2-16u-17=0 | | 2b=-26 |